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Summary

The crystal structure of (CsHs)s U was determined from single-crystal X-ray
diffraction data. The body-centered tetragonal unit cell contains two molecules
and has dimensions a 8.635(2) and ¢ 10.542(3) A. A structural model based on
a random mixture of a pair of enantiomorphic molecules in the crystal accounts
for the space-group symmetry, 142m, while individual molecules have point sym-
metry S, . In each molecule, planar C; rings are in a regular tetrahedral array
around a uranium atom and are pentahagpto-bonded to it. The C—C bond lengths
are all equal within experimental error and have a mean value of 1.386(5) A ; the
same is true for the U—C bonds whose mean is 2.807(11) A.

Introduction

Research has greatly increased on organometallic compounds of the tetra-
valent actinides since the synthesis of uranocene (dicyclooctatetraenyluranium-
(IV)) was reported [1] in 1968 and it was shown [2] to be a 7 sandwich com-
plex. In addition to the analogous metallocenes with Th [3], Np [4], and Pu
{41, several similar compounds have been prepared [5—7] in which the cyclo-
octatetraenyl dianion has various alkyl substituents and the metals are Th, U,

Np, and Pu. Other work on U™ organometallic compounds has included syn-
thesis of o-bonded aryl and alkyl complexes [8, 9] and structural studies [10—
12] of several substituted cyclopentadienyl derivatives of UV .

Tetracyclopentadienyluranium(IV), which was synthesized [13] more than
eleven years ago, and its analogues containing Th [14], Pa[15], and Np [16]
have been the subject of numerous investigations; but the conclusion reached have
been limited by lack of knowledge of the molecular structure. These studies have in-
cluded proton NMR [17] on (Cs Hs ); U, magnetic susceptibility of (Cs Hs )4 U [18]
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and (CsHs)sNp [19], Mossbauer absorption {18} by (CsHs)sNp, infrared ab-
sorption [20, 211 of (CsHs)aTh, (CsH;)sPa, (CsHs)aU, and (CsH;)4Np, and theo-
retical treatment [22] of the erystal-field splittings in (CsHs),U. Although the
early proposal [13] that (CsHs)sU forms a tetrahedral molecule was plausible,
some uncertainty was introduced when the structures became known for

(CsHs), Zr {231, (CsHs)sTi [24]1, and (CsHs).Hf [25], none of which have four
pentahapto-bonded rings. Consequently an X-ray diffraction analysis of the
structure of (Cs;H:)4sU was performed; a preliminary account has been given [26],
and the details are to be presented here.

Experimental

Tetracyclopentadienyluranium(IV) was prepared by reaction of UCl; and
KC; Hs in benzene, using the original method [13]. The product was extracted
with benzene to produce large, deep red, multifaceted crystals*. A single-crystal
specimen was selected which had a rhombohedral shape and a maximum dimen-
sion of about 0.024 cm. Because of its sensitivity to air the crystal was sealed
in a thin-walled glass tube with an Ar atmosphere.

Precession X-ray photographs showed the crystal symmetry to be tetrago-
nal. Reflections are absent when h + & + [ is odd, indicating that the lattice is
body centered. Subsequent careful examination by a diffractometer confirmed
that this is the pattern of absences, and measurement of 26 values of 9 reflections
in the range 41 - 47° were used to give the best values of the unit-cell dimensions
by least-squares refinement. They are a 8.635(2) and ¢ 10.542(3) A (T 25°C,
P\(Mo-Kal) = 0.70926 A). The calculated crystal density is 2.10 g-cm™2 for
Z =2

Measurement of intensities was carried out with a computer-controlled
Picker X-ray diffractometer employing Mo-K, (Nb filtered) radiation at a 2°
take-off angle. The 1194 reflections found in one octant of reciprocal space out
to 28 = 78° were recorded by 6—26 scanning. Scan ranges varied from 0.8° at
the lowest 26 to 1.8° at the highest; the backgrounds were counted at each end
of the scans and averaged. A reference reflection measured hourly varied in in-
tensity no more than 1.3% from the average throughout the data collection
period.

Structure determination and refinement

In order to correct the intensities for absorption, the six planes bounding
the crystal were measured with a microscope and transmission factors were cal-
culated** by the method of Busing and Levy [27]. These ranged from 0.16 to

*Crystals were supplied for this work by Dr.P. Laubereau of the Technical University of Munich and

"by Dr.B. Kanellakopulos of the Nuclear Research Center in Karlsruhe, Gexmany.

The following computer programs, written at ORNL for the IBM 360, were used in this work;

DATALIB, a data reduction program by Ellison and Levy incorporating ORABS, the absorption pro-

gram of Wehe, Busing, and Levy:; FORDAPER, a modification of Zalkin’s Fourier program: QRXFLS,

a version of the Busing-Levy least squares; ORFFE, a function and error program by Busing, Martin,

and Levy; ORTEP by Johnson for plotting; BSPLAN for obtaining the best plane through atoms

and EDIT for listing structure factors, both by Brown.
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0.26 and were based on a linear absorption coefficient of 126 cm—! for the
compound. By application of these corrections, the Lorentz and polarization
factors, and by interpolation between reference reflections, the data were con-
verted to a set of relative squared structure factors, F?2.

There were no systematic absences other than those due to the body-cen-
tered lattice. Hence, until the Laue symmetry could be determined, eight space
groups had to be considered as possibilities. From the observed monotonic de-
cline in intensity with increasing Bragg angle, it was deduced that the U atoms
lie at the origin and body center and dominate the scattering. Thus, although
the intensities appeared to have 4/mmm symmetry, i.e., intensities of reflections
(hkl) and (kh!) differed by only one or two standard errors, the lower symme-
try 4/m was initially assumed. With this symmetry and the appropriate data set
a Patterson map was calculated. It contained 80 peaks at distances from the
origin corresponding to U—C vectors and had essentially 4/mmm symmetry. Forty
of these maxima were easily assigned to four cyclopentadienyl rings of one
(CsH;)aU molecule and to a centrosymmetric set generated by Patterson sym-
metry. The other forty peaks were attributable to another set of rings which
were the mirror image of the original by reflection in a plane along (110). Be-
cause of stoichiometric and physical limitations, both sets of C atoms cannot
exist simultaneously; hence a disordered structure seemed required to explain
the Patterson map.

Nevertheless an attempt was made to refine the structure with an ordered
model using only one set of 20 C atoms in the asymmetric unit. Least-squares
refinement of this model (space group I4) converged to yield an agreement in-
dex, R = Z{F |—|F I/Z{F,|, of 0.0261 and a standard deviation of an observa-
tion of unit weight, ¢, , of 1.259. (In order to emphasize the relatively small
contribution of the C atoms to the intensities, it is noted that for a model with
U atoms alone, B = 0.052.) Yet, a subsequent electron density map still showed
the presence of both mirror-related molecules each with C atoms containing
half the normal number of electrons. Thus the disordered model was chosen
and refined in space group /42m with 700 observations to R = 0.0207 and 0, =
1.003, a highly significant improvement. A refinement of occupancy factors
yielded fractions of the two forms which are equal within one standard devia-
tion; exact equality was assumed in subsequent calculations. In the last stage
of refinement structure-factor calculations included H atoms at 1 A radial dis-
tances from the planar C; rings, with isotropic thermal parameters of 5 A2. A
final difference Fourier map showed no excursions greater than * 0.5 e/A> ex-
cept for some residual peaks at 1.6 e/A® around the U atom position.

The least-squares refinement involved minimization of Z[1/0? (F3)][F*—F2%]?
in which F is the calculated structure factor, scaled and corrected for isotropic
extinction [28] and 0? (F2) = 02 + (0.03 F2)?, 02 being the variance due to
counting statistics. Atomic scattering factors for U, C, and H were those of
Cromer and Waber [29] and the U atom was corrected for anomalous disper-
sion [30]. Because the imaginary component of anomalous dispersion is large,
it was possible to determine the absolute configuration of the crystal by com-
paring the R index (0.0207) from refined parameters describing the structure
with that (0.0263) from the refined structure after inversion through the origin
[31]. Hamilton’s [32] test indicates this difference to be significant at greater
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TABLE 2

STRUCTURE FACTORS ON AN ABSOLUTE SCALE
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configuration obtained in this way. The observed and calculated structure factors on

than the 0.995 level. The parameters given in Table 1 represent the absolute
an absolute scale are listed in Table 2.

f the structure
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2. There is disorder, however, and each molecular site contains either the mole-

cule pictured in Fig. 1 or its enantiomorph, producing an average structure con-
taining about equal quantities of each. This disorder probably results from the

fact that the two forms of the molecule are of equal energy and that their nearly
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Fig. 1. Stereoscopic view of one molecule of (CsHs)4 U with non hydrogen atoms represented by 50% pro-
bability thermal ellipsoids.

spherical exterior allows either to fit about equally well in a given site. From
consideration of intermolecular contacts which would occur between symme-
try-related molecules of the same handedness {ordered model) and between those of
opposite handedness (disordered), it is seen that there are about the same num-
ber in each case; thus no large domains of order are expected to exist. Thisis a
tentative conclusion because of the fact that the contacts considered all involve
H atoms, whose positions have not actually been determined.

Bond lengths and angles are listed in Table 8. The C—C bonds are all equal
within experimental errror, the greatest difference between any pair being 0.017
A between C(1)—C(2) and (C3)—C(4) with a standard deviation of 0.048 as es-

Fig 2. Stereoscopic view of one unit cell of (C5sHg)3U.
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TABLE 3
BOND DISTANCES (A) AND ANGLES (°)

CQ)—C(2) . 1.396(30) U—C(1) 2.785(22)
C(2)—C(3) 1.393(38) U—C(2) 2.813(18)
C(3)y—C(4) 1.380(33) U—C(3) 2.777(16)
C(4)>—C(5) 1.391(24) U—C(4) 2.833(17)
C(5X—C(1) 1.371(23) U—C(5) 2.829(14)
C(1)>—C(2)—C(3) 112.2(19)
C(2)—C(3)—C4) 100.7¢18)
C(3)—C(4)—C(5) 114.5(23)
C(4)>—C(5)—C) 104.7(20)
C(5—C(1)Y—C(2) 107.1(23)

timated from the variance-covariance matrix. Pairs of U—C distances do not dif-
fer significantly either, the extreme being 0.055 A with a standard deviation of
0.029 A. The mean values of C—C and U—C distances are 1.386(5) A and 2.807
(11) A, respectively, with each standard error of the mean in parentheses. The
range of interior angles for the pentagon is found to be rather large, the extremes
differing by 3.7 o’s, but there is no apparent chemical reason why the distortion
should be regarded as real; and in other respects the ring is a typical aromatic
cyclopentadienyl system. The five C atoms are within about 0.05 A of the least-
squares-determined best plane, whose equation, in fractional crystal coordinates,
is 5.17x + 4.89y + 5.96z = 2.55. Individual deviations, in A, are C(1), —0.024;
C(2), 0.047; C(3), —0.052; C(4), 0.039; C(5), —0.010. The perpendicular dis-
tance from the plane to the U atom is 2.55 A.

Thermal motions of the atoms are represented in Fig. 1 by 50% probabili-
ty ellipsoids, except for the H atoms which are shown as arbitrarily small spheres.
The motion of the U atom is almost isotropic, but the C-atom ellipsoids are ge-
nerally elongated in directions approximately tangential to the rings, indicating
some oscillation of the rings about their 5-fold axes. The rms amplitudes of
vibration along the major axes of the ellipsoids range from 0.28 to 0.47 A. A
more detailed treatment of the thermal motion does not seem justified in view
of the limitation on accuracy of the data caused by absorption and of the disor-
dered light atoms in the structure.

The determination that (CsHs), U is a tetrahedral molecule has verified the
configuration that was assumed in the interpretation of numerous physico-chem-
jcal measurements mentioned in the Introduction and provides quantitative data
for further calculations in some instances, e.g., crystal-field splittings [22]. Also,
the structures of (CsH;).Th, (CsH;s)sPa, and (CsH;s)sNp are now known since iso-
morphism was already indicated by X-ray powder diffraction [18, 20] and by
infrared data {20, 21]. .

Recently, there have been several precise structure determinations of or-
ganometallic U™V 7 complexes. These have involved cyclopentadienyl [12],
benzylcyclopentadienyl [11], indenyl {10}, cyclooctatetraenyl [2], and tetra-
methylcyclooctatetraenyl [33] ligands. The last two each form true sandwich
7 complexes; and experimental [1, 4, 5] and theoretical [1, 34] work has been
reported suggesting that in these the bonding is covalent and involves 5f orbitals
of uranium. Those compounds containing cyclopentadienyl rings also are of the
“sandwich’ type provided the name can include tetrahedral arrays of planar
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TABLE 4
ulV—c BOND LENGTHS IN VARIOUS COMPOUNDS

Compound Mean w-bond Reference
length (A)
(CgHg)2U 2.65. 2
[(CH3)4CgH3]1,U 2.66 33
(CsHg)3UC=CCgHs 2.68 12
(CeH5CH2C5Hq)3UCL 2,73 11
(CsH3)3UC1 2,749 36
(C9H+7)3UCI 2.79 10
(CsH35)aU 2.81 This work

dNot of comparable accuracy to the others listed.

rings. There is scattered chemical {13, 35] and physical evidence [17, 18] for
some covalency in these compounds too, the most direct in the case of (C;H;),U
being the Md&ssbauer studies of isomorphous (Cs;Hs),Np [18].

In all these structures of U'Y complexes with Cs and Cg rings there exists
essentially equal attachment of the metal to all the C atoms of each ring, i.e.,
h* and A® bonds, although the U—C bond lengths vary over a considerable range
as shown in Table 4. Leong et al. {11] have proposed a linear relationship between
the bond length and the charge on the ligand; but this does not account for all
the values in this list where, for some of the compounds, steric factors must also
be important. In any case the fact that, in spite of variation in bond lengths
(and coordination number), the bonding remains polyhapto throughout these
examples is possibly indicative of covalent character in these tetravalent uranium
compounds. Such is not the observation for cyclopentadienides of trivalent lan-
thanides (and actinides) in which there are examples of mixtures of h* and k'
bonding in (CsH;)sSm [37] and (CH3CsH,)sNd [38]. This may be attributed to
the greater ionic character [39] of the bonds in these compounds whereby the
structure achieved depends on packing of ions more so than in those formed
involving directional covalent bonding.
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